Minimal or No Touch Electrocardiography Recording and Remote Heart Rhythm Monitoring during COVID-19 Pandemic Era

  • Alexander Edo Tondas Cardiology & Vascular Medicine Department, Mohammad Hoesin General Hospital, Palembang, Indonesia
  • Rolando Agustian Halim Cardiology & Vascular Medicine Department, Mohammad Hoesin General Hospital, Palembang, Indonesia
  • Moza Guyanto Cardiology & Vascular Medicine Department, Mohammad Hoesin General Hospital, Palembang, Indonesia
Keywords: COVID-19, SARS-CoV-2, physical distancing, electrocardiogram, heart rhythm monitoring


At the end of year 2019, the world faced an outbreak of a highly virulent novel Coronavirus disease (COVID-19), which changed the way physicians, including cardiologists, do their routine clinical practice. As distance limitation and efficient use of personal protective devices must be employed to prevent the pandemic spreading, even simple electrocardiogram (ECG) taking that involves directly placing electrode leads on a patient’s body may become riskier. This review will discuss the possibility of minimal or no touch EKG using the latest wireless technologies, beneficial in monitoring COVID-19 patients for cardiovascular problems or patients who seek cardiac care, but with posing risk of concomitant COVID-19.


Download data is not yet available.

Author Biographies

Alexander Edo Tondas, Cardiology & Vascular Medicine Department, Mohammad Hoesin General Hospital, Palembang, Indonesia

Biomedicine Doctoral Program, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia

Cardiology & Vascular Medicine Department, Mohammad Hoesin General Hospital, Palembang, Indonesia

Moza Guyanto, Cardiology & Vascular Medicine Department, Mohammad Hoesin General Hospital, Palembang, Indonesia

Department of Cardiology and Vascular Medicine, Mohammad Hoesin General Hospital, Palembang, Sumatera Selatan, Indonesia


1. Aylward, Bruce (WHO); Liang W (PRC). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). WHO-China Jt Mission Coronavirus Dis 2019. 2020.
2. Ong SWX, Tan YK, Chia PY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a Symptomatic Patient. JAMA - J Am Med Assoc. 2020. doi:10.1001/jama.2020.3227
3. Kementrian Kesehatan. Pedoman Pencegahan dan Pengendalian COVID-19. 2020.
4. Center for Disease Control and Prevention (CDC). What You Need to Know about coronavirus disease 2019 (COVID-19). Choice Rev Online. 2020. doi:10.5860/choice.48-1502
5. Ferguson NM, Laydon D, Nedjati-Gilani G, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. ImperialAcUk. 2020;(March):3-20. doi:10.25561/77482
6. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period. medRxiv. 2020. doi:10.1101/2020.03.04.20031112
7. Ma K-L, Liu Z-H, Cao C, et al. COVID-19 Myocarditis and Severity Factors: An Adult Cohort Study. medRxiv. 2020. doi:10.1101/2020.03.19.20034124
8. Division of Viral Diseases - National Center for Immunization and Respiratory Diseases. Therapeutic Options for COVID-19 Patients. Centers for Disease Control and Prevention.
9. IDAI TC-19. Protokol Tatalaksana COVID-19. 2020.
10. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. Jama. 2020;2019. doi:10.1001/jama.2020.6019
11. Awadhesh Kumar Singh, Akriti Singh, Altamash Shaikh, Ritu Singh AM. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr Clin Res Rev. 2020;(January). doi:10.1016/j.dsx.2020.03.011
12. Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;(December 2019):105938. doi:10.1016/j.ijantimicag.2020.105938
13. Chen CY, Wang FL, Lin CC. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin Toxicol. 2006;44(2):173-175. doi:10.1080/15563650500514558
14. Capel RA, Herring N, Kalla M, et al. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential. Hear Rhythm. 2015;12(10):2186-2194. doi:10.1016/j.hrthm.2015.05.027
15. Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for Drug Interactions on QTc in Exploratory COVID-19 (Coronavirus Disease 2019) Treatment. Circulation. 2020;19:1-6. doi:10.1161/CIRCULATIONAHA.120.047521
16. Mitra RL, Greenstein SA, Epstein LM. An algorithm for managing QT prolongation in Coronavirus Disease 2019 (COVID-19) patients treated with either chloroquine or hydroxychloroquine in conjunction with azithromycin: Possible benefits of intravenous lidocaine. Hear Case Reports. 2020;2019. doi:10.1016/j.hrcr.2020.03.016
17. Isakadze N, Martin SS. How useful is the smartwatch ECG? Trends Cardiovasc Med. 2019. doi:10.1016/j.tcm.2019.10.010
18. Apple Watch Series 5 - Health & ECG - Apple.
19. Apple Watch ECG app: What cardiologists want you to know - CNET.
20. Turakhia MP et al. Results Of A Large-scale, App-based Study To Identify Atrial Fibrillation Using A Smartwatch: The Apple Heart Study - CRTOnline.
21. Saghir N, Aggarwal A, Soneji N, Valencia V, Rodgers G, Kurian T. Apple Watch Series 4 Vs. 12-Lead Ecg: a Comparison of Manual Electrocardiographic Waveform Analysis. J Am Coll Cardiol. 2020;75(11):378. doi:10.1016/s0735-1097(20)31005-6
22. FDA clears AliveCor’s Kardiaband as the first medical device accessory for the Apple Watch | TechCrunch.
23. KardiaBand - EKG Band for Your Apple Watch® | AliveCor – AliveCor, Inc.
24. Walker A, Muhlestein J. Smartphone electrocardiogram monitoring: current perspectives. Adv Heal Care Technol. 2018;Volume 4:15-24. doi:10.2147/ahct.s138445
25. Bansal A, Joshi R. Portable out-of-hospital electrocardiography: A review of current technologies. J Arrhythmia. 2018;34(2):129-138. doi:10.1002/joa3.12035
26. Lau JK, Lowres N, Neubeck L, et al. IPhone ECG application for community screening to detect silent atrial fibrillation: A novel technology to prevent stroke. Int J Cardiol. 2013. doi:10.1016/j.ijcard.2013.01.220
27. Lowres N, Neubeck L, Salkeld G, et al. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies: The SEARCH-AF study. Thromb Haemost. 2014. doi:10.1160/TH14-03-0231
28. KardiaMobile 6L | Portable 6-Lead EKG Device – AliveCor, Inc.
29. Muhlestein JB, Le V, Albert D, et al. Smartphone ECG for evaluation of STEMI: Results of the ST LEUIS Pilot Study. J Electrocardiol. 2015;48(2):249-259. doi:10.1016/j.jelectrocard.2014.11.005
30. Kumar S, Nagesh CM, Singh M, et al. Assessment of diagnostic accuracy of SanketLife – A wireless, pocket-sized ECG biosensor, in comparison to standard 12 lead ECG in the detection of cardiovascular diseases in a tertiary care setting. Indian Pacing Electrophysiol J. 2020;20(2):54-59. doi:10.1016/j.ipej.2019.12.011
31. Bharath Raj Kidambi, Aayush Kumar Singal SKR. Smart Phone Electrocardiogram – Bridging the Gap. J Pract Cardiovasc Sci. 2019. doi:10.4103/jpcs.jpcs_72_18
32. Esha Dyundi, Prashant Gupta, Robin Choudhary, KK Aggarwal, Sanchita Sharma PB. Evaluation of the Prevalence of Cardiovascular Disease in Urban Delhi Using a Handheld ECG. 2019;30(4):314-317.
33. Ghosh D, Rastogi N, Rastogi R, Dubey A. Wireless, Pocket-Sized ECG Monitor: A Potential Tool used in the Detection of Cardiovascular Disease. J Adv Res Med Sci Technol. 2016;3(1).
34. Barrett PM, Komatireddy R, Haaser S, et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med. 2014;127(1):95.e11-95.e17. doi:10.1016/j.amjmed.2013.10.003
35. Karunadas CP, Mathew C. Comparison of arrhythmia detection by conventional Holter and a novel ambulatory ECG system using patch and Android App, over 24 h period. Indian Pacing Electrophysiol J. 2020;20(2):49-53. doi:10.1016/j.ipej.2019.12.013
36. Steinberg JS, Varma N, Cygankiewicz I, et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Hear Rhythm. 2017;14(7):e55-e96. doi:10.1016/j.hrthm.2017.03.038
37. Fung E, Järvelin MR, Doshi RN, et al. Electrocardiographic patch devices and contemporary wireless cardiac monitoring. Front Physiol. 2015;6(MAY):1-10. doi:10.3389/fphys.2015.00149
38. Vanegas-Cadavid D, Valderrama-Barbosa Z, Ibatá-Bernal L. Clinical experience in extended cardiac monitoring with the SEEQTM satellite wireless system. Rev Colomb Cardiol. 2018;25(3):e17-e25. doi:10.1016/j.rccar.2017.09.008
Views & Downloads
Abstract views: 514   
PDF downloads: 222   
How to Cite
Tondas, A. E., Halim, R. A., & Guyanto, M. (2020). Minimal or No Touch Electrocardiography Recording and Remote Heart Rhythm Monitoring during COVID-19 Pandemic Era. Indonesian Journal of Cardiology, 41(2), 133-41.