Novel Echocardiographic Parameter Assessing Pulmonary Vascular Resistance in Patient with Acyanotic Congenital Heart Disease

  • Muhammad Raihan Ramadhan Natadikarta Departement of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
  • Charlotte Johanna Cool Departement of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
  • Achmad Fitrah Khalid Departement of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
  • Norman Sukmadi Departement of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
  • Januar Wibawa Martha Departement of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
Keywords: Congenital Heart Disease, Echocardiography, Pulmonary Hypertension, Pulmonary Vascular Resistance, Right Ventricle Global Longitudinal Strain

Abstract

Background

Pulmonary vascular resistance (PVR) is an important variable in management of acyanotic congenital heart disease. Right heart catheterization (RHC) using impedance catheter remains gold standard for pulmonary vascular resistance (PVR) measurement. The ratio of peak tricuspid regurgitant velocity to the right ventricular outflow tract time-velocity integral (TRVmax/RVOTVTI) was presented as a reliable non-invasive method of estimating PVR. Recently, right ventricular 2-dimensional speckle tracking strain (RVGLS) was proven as a new promising parameter to evaluate PVR. This study performed to examine whether this new non-invasive variable ratio (TRVmax/RVGLS) provides clinically reliable method to determine pulmonary vascular resistance (PVR) obtained by echocardiography.

Methods

Right-heart catheterization and echocardiographic examination were performed in 56 patients with congenital heart disease. The ratio of TRVmax/RVOTVTI and TRVmax/RVGLS analysis performed using receiver-operating characteristic curve analysis, a cutoff value for the ratio was generated to determine PVR more than 5 WU.

Results

A TRVmax/RVOTVTI cutoff value of 0.21 provided a sensitivity of 77.1% and a specificity of 81% (CI 81% to 97.5%) and TRVmax/RVGLS cutoff value of -23.16 provided sensitivity of 74.3% and a specificity of 90.5% to determine PVR > 5 WU (CI 79.6% to 98.2%).

 

Conclusions

The echocardiography parameter (TRVmax/RVGLS) could serve as a dependable noninvasive method to predict PVR greater than 5 WU in acyanotic congenital heart disease patients.

Downloads

Download data is not yet available.

References

1. Baumgartner H, de Backer J, Babu-Narayan S V., Budts W, Chessa M, Diller GP, et al. 2020 ESC Guidelines for the management of adult congenital heart disease. European Heart Journal. Oxford University Press; 2021. p. 563–645.
2. Tamimi O, Mohammed MHA. Pulmonary Vascular Resistance Measurement Remains Keystone in Congenital Heart Disease Management. Front Cardiovasc Med [Internet]. Frontiers Media SA; 2021 Mar 31;8.
3. Callan P, Clark AL. Right heart catheterisation: indications and interpretation. Heart [Internet]. BMJ Publishing Group Ltd and British Cardiovascular Society; 2016 Jan 15;102(2):147–57.
4. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. Elsevier; 2003 Mar 19;41(6):1021–7.
5. Roule V, Labombarda F, Pellissier A, Sabatier R, Lognoné T, Gomes S, et al. Echocardiographic assessment of pulmonary vascular resistance in pulmonary arterial hypertension. Cardiovasc Ultrasound [Internet]. BioMed Central; 2010 Jun 7;8(1):1–6.
6. Abbas AE, Franey LM, Marwick T, Maeder MT, Kaye DM, Vlahos AP, et al. Noninvasive assessment of pulmonary vascular resistance by doppler echocardiography. Journal of the American Society of Echocardiography [Internet]. Elsevier; 2013 Oct 1;26(10):1170–7.
7. Park JH, Negishi K, Kwon DH, Popovic ZB, Grimm RA, Marwick TH. Validation of Global Longitudinal Strain and Strain Rate as Reliable Markers of Right Ventricular Dysfunction: Comparison with Cardiac Magnetic Resonance and Outcome. J Cardiovasc Ultrasound [Internet]. BMC; 2014 Sep 1;22(3):113.
8. Csadi DR, Morvai Illes DB, Jdid Mahmoud DS, Monoki DM, Varga PA, Agoston DG. The relationship between RV strain and haemodynamic parameters in patients with pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging [Internet]. Oxford Academic; 2023 Jun 19;24(Supplement_1):649.
9. Seo HS, Lee H. Assessment of Right Ventricular Function in Pulmonary Hypertension with Multimodality Imaging. J Cardiovasc Imaging [Internet]. BMC; 2018 Dec 1;26(4):189.
10. Aduen JF, Castello R, Lozano MM, Hepler GN, Keller CA, Alvarez F, et al. An Alternative Echocardiographic Method to Estimate Mean Pulmonary Artery Pressure: Diagnostic and Clinical Implications. Journal of the American Society of Echocardiography [Internet]. Elsevier; 2009 Jul 1;22(7):814–9.
11. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr [Internet]. J Am Soc Echocardiogr; 2010 Jul;23(7):685–713.
12. Dahiya A, Vollbon W, Jellis C, Prior D, Wahi S, Marwick T. Echocardiographic assessment of raised pulmonary vascular resistance: application to diagnosis and follow-up of pulmonary hypertension. Heart [Internet]. Heart; 2010 Dec;96(24):2005–9.
13. Rajagopalan N, Simon MA, Suffoletto MS, Shah H, Edelman K, Mathier MA, et al. Noninvasive estimation of pulmonary vascular resistance in pulmonary hypertension. Echocardiography [Internet]. Echocardiography; 2009 May;26(5):489–94.
14. Roule V, Labombarda F, Pellissier A, Sabatier R, Lognoné T, Gomes S, et al. Echocardiographic assessment of pulmonary vascular resistance in pulmonary arterial hypertension. Cardiovasc Ultrasound [Internet]. Cardiovasc Ultrasound; 2010;8(1).
15. Farzaneh-Far R, McKeown BH, Dang D, Roberts J, Schiller NB, Foster E. Accuracy of Doppler-Estimated Pulmonary Vascular Resistance in Patients Before Liver Transplantation. American Journal of Cardiology [Internet]. Elsevier; 2008 Jan 15;101(2):259–62.
16. Ajami GH, Cheriki S, Amoozgar H, Borzouee M, Soltani M. Accuracy of Doppler-derived estimation of pulmonary vascular resistance in congenital heart disease: an index of operability. Pediatr Cardiol [Internet]. Pediatr Cardiol; 2011 Dec;32(8):1168–74.
17. Albers J, Ister D, Kayhan N, Vahl CF. Postoperative non-invasive assessment of pulmonary vascular resistance using Doppler echocardiography. Interact Cardiovasc Thorac Surg [Internet]. Interact Cardiovasc Thorac Surg; 2011 Dec;13(6):579–84.
18. Kouzu H, Nakatani S, Kyotani S, Kanzaki H, Nakanishi N, Kitakaze M. Noninvasive Estimation of Pulmonary Vascular Resistance by Doppler Echocardiography in Patients With Pulmonary Arterial Hypertension. American Journal of Cardiology [Internet]. Elsevier; 2009 Mar 15;103(6):872–6.
19. Opotowsky AR, Clair M, Afilalo J, Landzberg MJ, Waxman AB, Moko L, et al. A Simple Echocardiographic Method To Estimate Pulmonary Vascular Resistance. Am J Cardiol [Internet]. NIH Public Access; 2013 Sep 9;112(6):873.
20. Haddad F, Zamanian R, Beraud AS, Schnittger I, Feinstein J, Peterson T, et al. A Novel Non-Invasive Method of Estimating Pulmonary Vascular Resistance in Patients With Pulmonary Arterial Hypertension. Journal of the American Society of Echocardiography. Mosby Inc.; 2009;22(5):523–9.
21. Selimovic N, Rundqvist B, Bergh CH, Andersson B, Petersson S, Johansson L, et al. Assessment of Pulmonary Vascular Resistance by Doppler Echocardiography in Patients With Pulmonary Arterial Hypertension. Journal of Heart and Lung Transplantation. 2007 Sep;26(9):927–34.
22. Lindqvist P, Söderberg S, Gonzalez MC, Tossavainen E, Henein MY. Echocardiography based estimation of pulmonary vascular resistance in patients with pulmonary hypertension: a simultaneous Doppler echocardiography and cardiac catheterization study. European Journal of Echocardiography [Internet]. Oxford Academic; 2011 Dec 1;12(12):961–6.
23. Li Y, Xie M, Wang X, Lu Q, Fu M. Right ventricular regional and global systolic function is diminished in patients with pulmonary arterial hypertension: A 2-dimensional ultrasound speckle tracking echocardiography study. International Journal of Cardiovascular Imaging [Internet]. Springer; 2013 Mar 6;29(3):545–51.
24. Pirat B, McCulloch ML, Zoghbi WA. Evaluation of Global and Regional Right Ventricular Systolic Function in Patients With Pulmonary Hypertension Using a Novel Speckle Tracking Method. American Journal of Cardiology [Internet]. Elsevier; 2006 Sep 1;98(5):699–704.
25. Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M, Kapur NK, et al. Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation [Internet]. Circulation; 2018 May 15;137(20):e578–622.
26. Muraru D, Haugaa K, Donal E, Stankovic I, Voigt JU, Petersen SE, et al. Right ventricular longitudinal strain in the clinical routine: a state-of-the-art review. Eur Heart J Cardiovasc Imaging [Internet]. Oxford Academic; 2022 Jun 21;23(7):898–912.
27. Ünlü S, Bézy S, Cvijic M, Duchenne J, Delcroix M, Voigt JU. Right ventricular strain related to pulmonary artery pressure predicts clinical outcome in patients with pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging [Internet]. Oxford Academic; 2023 Apr 24;24(5):635–42.
28. Humenberger M, Rosenhek R, Gabriel H, Rader F, Heger M, Klaar U, et al. Benefit of atrial septal defect closure in adults: impact of age. Eur Heart J [Internet]. 2010 Mar;32(5):553.
29. Yong G, Khairy P, De Guise P, Dore A, Marcotte F, Mercier LA, et al. Pulmonary arterial hypertension in patients with transcatheter closure of secundum atrial septal defects: a longitudinal study. Circ Cardiovasc Interv [Internet]. Circ Cardiovasc Interv; 2009 Oct;2(5):455–62.
30. Manes A, Palazzini M, Leci E, Bacchi Reggiani ML, Branzi A, Galiè N. Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease: a comparison between clinical subgroups. Eur Heart J [Internet]. Eur Heart J; 2014;35(11):716–24.
31. D’Alto M, Romeo E, Argiento P, Correra A, Santoro G, Gaio G, et al. Hemodynamics of patients developing pulmonary arterial hypertension after shunt closure. Int J Cardiol [Internet]. Int J Cardiol; 2013 Oct 9;168(4):3797–801.
32. Steele PM, Fuster V, Cohen M, Ritter DG, McGoon DC. Isolated atrial septal defect with pulmonary vascular obstructive disease--long-term follow-up and prediction of outcome after surgical correction. Circulation [Internet]. Circulation; 1987;76(5):1037–42.
33. Cool CJ, Khalid AF, Sukmadi N, Akbar MR, Setiabudiawan B, Rahayuningsih SE. The association of right ventricular-pulmonary arterial coupling and pulmonary vascular resistance in adult patients with uncorrected atrial septal defect. BMC Cardiovasc Disord [Internet]. BMC Cardiovasc Disord; 2024 Dec 1;24(1).
Published
2025-01-10
Views & Downloads
Abstract views: 32   
PDF downloads: 24   
How to Cite
Natadikarta, M. R. R., Cool, C. J., Khalid, A. F., Sukmadi, N., & Martha, J. W. (2025). Novel Echocardiographic Parameter Assessing Pulmonary Vascular Resistance in Patient with Acyanotic Congenital Heart Disease. Indonesian Journal of Cardiology, 46(1). https://doi.org/10.30701/ijc.1790